
J. Fluid Mech. (2008), vol. 595, pp. 239–264. c© 2008 Cambridge University Press

doi:10.1017/S0022112007009184 Printed in the United Kingdom

239

The collective dynamics of self-propelled
particles

VISHWAJEET MEHANDIA AND PRABHU R. NOTT†
Department of Chemical Engineering, Indian Institute of Science, Bangalore 560 012, India

(Received 8 October 2006 and in revised form 10 September 2007)

We propose a method for the dynamic simulation of a collection of self-propelled
particles in a viscous Newtonian fluid. We restrict attention to particles whose size
and velocity are small enough that the fluid motion is in the creeping flow regime.
We propose a simple model for a self-propelled particle, and extended the Stokesian
Dynamics method to conduct dynamic simulations of a collection of such particles.
In our description, each particle is treated as a sphere with an orientation vector p,
whose locomotion is driven by the action of a force dipole Sp of constant magnitude
S0 at a point slightly displaced from its centre. To simplify the calculation, we place
the dipole at the centre of the particle, and introduce a virtual propulsion force Fp to
effect propulsion. The magnitude F0 of this force is proportional to S0. The directions
of Sp and Fp are determined by p. In isolation, a self-propelled particle moves at
a constant velocity u0 p, with the speed u0 determined by S0. When it coexists with
many such particles, its hydrodynamic interaction with the other particles alters its
velocity and, more importantly, its orientation. As a result, the motion of the particle
is chaotic. Our simulations are not restricted to low particle concentration, as we
implement the full hydrodynamic interactions between the particles, but we restrict
the motion of particles to two dimensions to reduce computation. We have studied
the statistical properties of a suspension of self-propelled particles for a range of the
particle concentration, quantified by the area fraction φa. We find several interesting
features in the microstructure and statistics. We find that particles tend to swim in
clusters wherein they are in close proximity. Consequently, incorporating the finite
size of the particles and the near-field hydrodynamic interactions is of the essence.
There is a continuous process of breakage and formation of the clusters. We find that
the distributions of particle velocity at low and high φa are qualitatively different;
it is close to the normal distribution at high φa, in agreement with experimental
measurements. The motion of the particles is diffusive at long time, and the
self-diffusivity decreases with increasing φa. The pair correlation function shows a
large anisotropic build-up near contact, which decays rapidly with separation. There
is also an anisotropic orientation correlation near contact, which decays more slowly
with separation. Movies are available with the online version of the paper.

1. Introduction
Nature presents a wide and fascinating array of organisms that can propel

themselves in a fluid medium. Collections of swimming organisms exhibit intricate
patterns and complex dynamics, such as the flocking of birds, schooling of fish
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and coherent motion in micro-organisms (Childress, Levandowsky & Spiegel 1975;
Dombrowski et al. 2004; Kessler 1986; Wager 1911). While higher organisms, such
as fish and birds, have advanced sensory abilities to guide their motion, the sensory
ability of micro-organisms is quite rudimentary. Consequently, the interaction of
micro-organisms is largely mediated by the intervening fluid. Hence, understanding
the hydrodynamics associated with the motion of individual organisms, and their
fluid-mediated interactions is necessary for understanding their collective behaviour.

The size a and swimming velocity u0 of most swimming micro-organisms are such
that the Reynolds number Re ≡ ρu0a/η is very small (Lighthill 1976; Purcell 1977;
Taylor 1951), and the Péclet number Pe ≡ (6πηu0a

2)/(kBT ) is very large (Pedley &
Kessler 1992). Here ρ and η are the density and viscosity, respectively, of the fluid,
kB is the Boltzmann constant and T the absolute temperature. This means that
the fluid motion is in the creeping flow regime, governed by Stokes equations, and
Brownian motion of the micro-organisms is negligible. If their density ρp does not
differ very much from ρ, as is normally the case, the Stokes number St ≡ (ρp/ρ)Re

is also very small. In this regime, the inertia of the fluid and the ‘particles’ (i.e. the
micro-organisms) play no role, and hence propulsion does not come from bursts of
acceleration generated by ‘pushing’ the fluid back, as in larger organisms. In Stokes
flow, the net force on each swimmer is zero at every instant, and therefore the
propulsion force balances the drag (Lighthill 1976; Taylor 1951). Instead, propulsion
is achieved by a cyclic deformation of the body of the organism. The reversibility of
Stokes equations implies that a reciprocal deformation during a cycle achieves no net
displacement; hence a non-reciprocating cyclic deformation is required.

Micro-organisms propel themselves in a number of ways: undulation of one or
more flagella, helical motion of flagella, and coordinated waving of a large number of
cilia are some examples. Since the pioneering work of Taylor (1951), a large number
of studies have considered the mechanics of propulsion by flagella and cilia (see, for
example, Childress 1981), and a reasonable understanding of the subject has emerged.

In this paper we focus on the collective behaviour of self-propelled particles in the
regime of Stokes flow. For this purpose, we argue that the details of the mechanism
of propulsion are not very important; regardless of the propulsion device, the fluid
flow far from the particle is, to the lowest order of approximation, that due to
a force dipole. We show that computing the hydrodynamic interactions between
the self-propelled particles is similar to that in a suspension of ‘passive’, or non-
swimming, particles dispersed in a fluid. It is well known that the hydrodynamic
interaction between the suspended particles plays a crucial role in determining the
bulk properties, such as its rheology, of a suspension. Moreover, the many-body
hydrodynamic interactions result in a range of complex behaviour, such as shear-
induced diffusion and migration of particles (Leighton & Acrivos 1987a ,b; Nott &
Brady 1994), anisotropic microstructure (Brady & Morris 1997; Parsi & Gadala-
Maria 1987; Singh & Nott 2000), and nonlinear rheology (Sierou & Brady 2002;
Singh & Nott 2003; Zarraga, Hill & Leighton 2000). It is therefore quite likely that
even our simple model will result in interesting and complex dynamical behaviour.

Following the early work of Childress et al. (1975), several studies have considered
the collective motion and pattern formation of populations of self-propelled particles
in a fluid by following a continuum mechanical approach. Childress et al. showed that
the ‘bioconvection’ patterns observed in suspensions of motile organisms for over a
century (see, for example, Wager 1911) can be explained as a hydrodynamic instability
akin to the Rayleigh–Bénard instability. It is caused when the equilibrium between
the negative geotaxis (i.e. their tendency to swim against gravity) of the particles and
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their sedimentation due to their higher density is perturbed. Kessler (1986) and Pedley,
Hill & Kessler (1988), followed by other studies of the same group (Hill, Pedley &
Kessler 1989; Pedley & Kessler 1990), coupled to this model the effect of gyrotaxis,
or the competing effects of gravitational and viscous torques on the particles which
together determine the swimming direction. In these continuum models, the system is
modelled as a multiphase medium for which the field variables are the velocity and
pressure of the suspension (fluid and particles), the number density of the particles
and their orientation. The governing equations are the conservation of mass and
momentum of the suspension, the number density of the particles and an evolution
equation for the orientation.

More recently, another class of models has emerged, starting from the work of
Vicsek et al. (1995). They proposed a model in which the positions of the self-
propelled particles evolve according to a simple set of rules: each particle moves with
constant speed, and its orientation at any time step is the average orientation of other
particles in its neighbourhood in the previous time step, with a random noise added.
This simple model leads to a range of behaviour, including a continuous transition
from a disordered ‘phase’ to an oriented phase with increasing number density
and/or decreasing noise. The continuum analogue of this model was presented by
Toner & Tu (1995), and in a form more appropriate for freely swimming particles
by Simha & Ramaswamy (2002), the latter being an extension of the hydrodynamic
theory of nematic liquid crystals. In all these models, there is an implicit assumption
of the existence of short-range forces between particles that result in alignment.
These theories predict certain long-wavelength instabilities and anomalously large
fluctuations in the number density, which are yet to be tested experimentally.

Though continuum models are useful in understanding behaviour on large length
and time scales, they cannot answer questions on the microstructure of the constituent
particles. Besides providing information on the small-scale organization of the
particles, knowledge of the microstructure also provides inputs to the continuum
models, and helps in refining them. The seminal work of Batchelor & Green (1972)
related the viscosity of a dilute suspension to the pair correlation of the suspended
spheres; more recent studies (Brady & Morris 1997; Parsi & Gadala-Maria 1987;
Sierou & Brady 2002; Singh & Nott 2000) have related the anisotropy of the particle
microstructure to the nonlinear rheology of the suspension, which is an important
input in continuum models.

In this study, we attempt to understand the collective motion of self-propelled
particles at a microscopic and mesoscopic level. We propose a model for self-
propulsion, and incorporate the full hydrodynamic interactions between the particles.
We extend the Stokesian Dynamics technique (Brady et al. 1988; Brady & Bossis
1988; Durlofsky, Brady & Bossis 1987) to incorporate self-propulsion, and carry
out dynamic simulations for a range of the particle concentration. We track the
motion of every particle as a function of time, and extract the relevant statistical
and microstructural properties. We find interesting and unexpected aspects of the
collective dynamics reflected in the distribution of particle velocity and the position
and orientation correlations.

During the course of our investigation, a few papers have appeared in which models
for self-propulsion have been proposed (Hernandez-Ortiz, Stoltz & Graham 2005;
Ishikawa, Simmonds & Pedley 2006; Ramachandran, Sunil Kumar & Pagonabarraga
2006). Hernandez-Ortiz et al. (2005) modelled a swimmer as a dumbbell comprising
two beads connected by a rigid rod, with propulsion effected by a ‘phantom’ flagellum
attached to one of the beads. The force exerted by the rigid rod is such that the net
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force on each bead vanishes. Ishikawa et al. (2006) developed a model of a squirmer,
on the basis of the work of Lighthill (1952), in which propulsion is generated by
the tangential motion of the particle surface in a prescribed manner. Ramachandran
et al. (2006) used the lattice-Boltzmann method (LBM) to simulate a swimmer, and
achieved propulsion by an asymmetric distribution of forces on the surface of the
particle with zero mean. In all these models, the net external force on the swimmer
is zero, but there is a force dipole on it, as in our study. However, our model
differs from them in some significant ways: we consider the swimmers to be of finite
size and implement the full hydrodynamic interactions, while Hernandez-Ortiz et al.
treat the beads as point forces. Ishikawa et al. consider finite-sized particles, but
the nature of the model makes the computation of the hydrodynamic interactions
between particles more difficult. However, it may be a more accurate representation
of certain types of swimming organisms. While the LBM model of Ramachandran
et al. also considers finite-sized particles, the computation of near-field interactions for
particles in proximity is computationally intensive in their method (see the following
paragraph) and inaccurate. Thus, we believe that the method we have proposed makes
an optimal balance between accurate representation of the physical phenomenon on
the one hand, and computational efficacy on the other. Moreover, the method we
propose can be systematically refined by retaining higher moments of the surface
force distribution, yielding a more sophisticated model for propulsion.

Hernandez-Ortiz et al. (2005) used their model of a swimmer to simulate the
collective dynamics of a system of particles bounded by plane parallel walls. Due to
the nature of their model, they computed only the far-field point-force interactions
between the beads. Llopis & Pagonabarraga (2006) used the propulsion model of
Ramachandran et al. (2006) to simulate interacting swimmers; however, they choose
a particle radius of only 2.5 times the lattice spacing, making the spatial discretization
very coarse. Moreover, they assumed an elastic collision between particles that
are close to each other, which differs qualitatively from the dissipative lubrication
interaction that is in force near contact. Our simulations show that a typical swimmer
comes in close proximity with its neighbours; hence, we believe it is quite important to
account for the finite particle size in the far-field interactions, and accurately represent
the near-field interactions to correctly capture the dynamics of the particles. We
consider the collective dynamics of swimmers in an unbounded (spatially periodic)
domain, while Hernandez-Ortiz et al. studied a system bounded by plane parallel
walls. Finally, we present results on the microstructure and statistics of self-propelled
particles that, to our knowledge, have not been reported earlier.

2. Our model for a self-propelled particle
To motivate our model for a swimmer, consider the schematic of a bi-flagellate

organism, shown in figure 1. We ignore, for the moment, the effect of gravity or
any other external force. The periodic, but non-reciprocating, ‘beating’ of its flagella
results in the action of a forward propulsive force 1

2
Fp by the fluid on each flagella.

The motion of the particle is retarded by the fluid with drag force Fp, as the particle
cannot accelerate in the regime of Stokes flow. Though there is no net force, it is clear
that there is a force dipole Sp, and perhaps higher multipoles, acting on the particles.
If there is no external torque on the particles, the dipole must be symmetric, i.e. it
is a stresslet. We have used the biflagellate, in which one can make the distinction
between the ‘propulsion arm’ and the ‘body’ of the swimmer, only as an evocative
example. Often it is not possible to separate the propulsion force and the drag, an
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Figure 1. Schematic diagram of a biflagellate micro-organism. The propulsion force on the
flagella is matched by the drag force on the body of the organism.
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Figure 2. Our model for a self-propelled particle. Here p is the unit vector identifying the
orientation of the particle. Propulsion is generated by the action of a stresslet Sp = S0 ( pp− 1

3
δ)

at a point displaced from the centre in the direction of p.

example being a waving filament or sheet (Taylor 1951). Thus, it is more accurate to
say that, at lowest order, a Stokesian swimmer is propelled by a force dipole.

While the magnitude of the stresslet changes over the duration of a cycle, we are
interested in the behaviour over time scales much larger than the period of a beat,
and therefore assume the magnitude to be constant. However, the principal directions
of the stresslet may vary in time, as interactions with other particles will cause the
particle to rotate. The simplest model for propulsion, therefore, is a stresslet Sp of
constant magnitude acting on the particles (figure 2); this is the first approximation
of a swimmer, regardless of the actual mechanism of its propulsion.

The contribution of the stresslet on a swimmer to the bulk stress in the suspension
has long been recognized (Pedley & Kessler 1990), but it is not widely recognized
that, at lowest order, the stresslet also generates propulsion.

The diameter of the flagella or cilia is typically far smaller than the body of the
organism. For instance, the body diameter and flagella length of Chlamydomonas
Nivalis, a bi-flagellate alga, are roughly 10 µm, but the diameter of the flagella is
only 0.1 µm (Melkonian 1992). Propulsion is generated because the flagella beat
rapidly, so that their characteristic speed is much larger than that of the entire
organism (∼100 µms−1). Jones et al. (1994) used the resistance coefficients for a
model flagellum provided by Lighthill (1976), and estimated that the body moves
roughly a tenth of its diameter for each beat of the flagellum. Therefore, for the slow
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movement of the entire organism the hydrodynamic resistance of the flagella is only
a small fraction of its total resistance, and to a first approximation may be neglected.

We make the additional simplification that the particles are rigid spheres, as it
simplifies the analysis and significantly eases computation. A stresslet acting at the
centre of a sphere does not lead to movement, hence it must be displaced from the
centre. It is clear from figure 1 that the centre of the dipole is not coincident with
the hydrodynamic centre of the swimmer. Though the particles are treated as spheres,
they possess an orientation which determines the direction of propulsion. Considering
particle α, if pα is the unit vector identifying its orientation, the propulsion stresslet
acting on it is (Pedley & Kessler 1990)

Sα
p = S0

(
pα pα − 1

3
δ
)
, (2.1)

where S0 is its magnitude, and δ is the unit tensor. Sα
p is traceless, as the

trace contributes to the isotropic pressure of the fluid, which is arbitrary in an
incompressible fluid. However, the induced stresslet Sα

i (see § 3) can have a finite
trace; it arises from the interactions between particles and is related to the particle
pressure (Jeffrey, Morris & Brady 1993; Nott & Brady 1994). We note that S0 can
be positive or negative: it is positive when the propelling arms pull the particle from
the ‘front’, and negative when they push it at the ‘rear’. Both cases occur in nature;
Chlamydomonas is an example of the former, and spermatozoa an example of the
latter.

From the linearity of Stokes equations, it follows that the velocity of locomotion
of particle α is related to its propulsion stresslet Sα

p as

uα
p = uα + M̂

αα

US · Sα
p, (2.2)

where M̂
αα

US is the mobility of particle α due to the stresslet acting on itself, the caret
denoting that it is the mobility for the off-centre stresslet, and uα is the velocity of the

imposed macroscopic flow field at the particle centre. For an isolated particle, M̂
αα

US

is a constant; in the presence of other particles (or boundaries), it depends on their

positions relative to α. However, determination of M̂
αα

US is not a simple task: one way
of doing it is to transfer the off-centre stresslet to the centre of the particle, which
results in the introduction of all the higher multipoles at the centre. The dipole and
all odd multipoles acting at the centre of the sphere do not lead to locomotion, as a
result of symmetry, and hence one has to take account of the quadrupole and higher
even moments. This is a level of detail we wish to avoid, as we would like to restrict
the description to the level of monopole (force) and dipole (torque, and stresslet). To

avoid this complication, we resort to an artifice that makes the determination of M̂
αα

US

unnecessary: we determine the propulsion velocity of particle α as though a virtual
propulsion force Fα

p acts on it. This is an approximation, but we believe it to be a
reasonable one; it only affects the way the propulsion velocity of a particle is hindered
in the presence of other particles. Consequently, (2.2) is replaced by

uα
p = uα + Mαα

UF · Fα
p , (2.3)

where Mαα
UF is the mobility of a sphere due to a force acting at its centre. As the force

must act in the direction of pα , we set

Fα
p = F0 pα, (2.4)

where F0 is the magnitude of the force. Clearly, F0 is determined by |S0| (only the
absolute value is relevant, as the direction of locomotion is the same whether the
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particle is being pushed or pulled), the particle radius a and the displacement of the
stresslet from the centre; we therefore set

F0 = λ|S0|/a, (2.5)

where λ is an O(1) dimensionless parameter that is related to the displacement of
Sα

p from the centre. Pedley & Kessler (1990) arrived at a relation similar to (2.5)
between the thrust exerted by the flagella and the magnitude of the stresslet. In this
simplified form, our model is similar to that of Hernandez-Ortiz et al. (2005), who
used a ‘phantom flagellum’ to drive the dumbbells (see § 1). The important difference
between our model and theirs is that interactions between particles modulate the
effect of the virtual propulsion force, as the mobility MUF (see below) of a particle is
reduced if it is close to another particle or a wall.

We emphasize that the other particles do not perceive a force acting on α, but only
the stresslet Sα

p. The force on each particle serves only to determine its propulsion.
In addition to the propulsion stresslet, a stresslet Sα

i is induced on α when it is
placed in a non-uniform velocity field, as a result of its rigidity.

To summarize, our model for a self-propelled particle is the following: each particle
α is treated as a rigid sphere with an orientation vector pα , on which a stresslet Sα

p

(of the form given in (2.1)) acts at a point slightly displaced from its centre. The
displacement of the stresslet from the centre of α is not perceptible to any other
particle, and hence α appears as a sphere with a stresslet acting at its centre. The
propulsion velocity of α is determined by introducing a virtual propulsion force Fα

p

(of the form is given in (2.4) and (2.5)) on it. However, other particles do not perceive
the force on α.

3. Collective dynamics
To place the problem in the framework of the Stokesian Dynamics method, let us

first consider the dynamics of a suspension of passive particles. (We emphasize that
the word ‘passive’ is used in this paper to refer to particles that are not self-propelled,
and not for tiny tracer particles that translate with the local fluid velocity.) For the
motion of non-Brownian rigid spheres in a Newtonian fluid at small Stokes number,
Newton’s second law reduces to

FH + F = 0, (3.1)

where FH is the vector of the hydrodynamic forces and torques on all the particles,
and F is the vector of the non-hydrodynamic forces (external forces such as gravity,
and inter-particle forces) and torques.

To determine the motion of the particles, we must relate FH to the vector of their
velocities and angular velocities u; in the creeping flow regime, this is accomplished
by solving the Stokes equations, with the boundary conditions of no penetration and
no slip on the surface of the particles. The hydrodynamic interactions between the
particles cause the velocity and angular velocity of a given particle to depend not
just on the hydrodynamic force and torque acting on it, but also on the forces and
torques acting on all the other particles. More precisely, u depends on the distribution
of the hydrodynamic force on the surfaces of all the particles. A convenient way of
representing the distribution of force on the surface of a particle is the multipole
moment expansion (see, for example, Kim & Karrila 1991, chaps. 2–4): the zeroth
multipole (monopole) is the net force on the particle; the first multipole (dipole)
may be separated into its symmetric and antisymmetric parts, the former being the
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stresslet and the latter the torque. By the linearity of Stokes equations, u is given by

(
u − u

−e

)
= M ·

(
F
S

)
, (3.2)

where we have used (3.1) to replace FH with F. Here, S is the vector of the
hydrodynamic stresslets, and u and e are vectors of the velocities and strain rates,
respectively, of the externally imposed flow field at the particle centres. The quantity
M is the so-called ‘grand’ mobility tensor, which can be decomposed into the mobility
tensors representing the various couplings,

M =

(
MUF MUS

MEF MES

)
, (3.3)

the subscripts indicating the nature of the coupling. In principle, the right-hand
side of (3.2) must include higher moments of the force distribution on the particle
surface, and the left-hand side the higher gradients of the imposed velocity field – for
each higher moment included, there will be an additional equation. The Stokesian
Dynamics method (Brady et al. 1988; Brady & Bossis 1988; Durlofsky et al. 1987),
which we shall modify and use for the present problem, retains only the monopole
and the dipole moments.

The physical meaning of (3.2) is as follows: the first line enforces (3.1), and
determines u; the second line can be thought of as the equation to determine S. The
stresslet is induced on each particle by the flow around it (externally imposed, and
generated by the motion of other particles) so as to keep it rigid.

The main advantage of the Stokesian Dynamics method is that M (or equivalently
the grand resistance R ≡ M−1) is computed and assembled in an accurate and efficient
manner. This is done as a matched sum of the far-field and near-field interactions,

M−1 = M−1
ff + Rnf − R∞

nf. (3.4)

Here, Mff is the mobility tensor that captures the far-field interactions, Rnf is the
near-field resistance tensor, and R∞

nf is the far-field part of Rnf that is subtracted to
get a uniform asymptotic expansion. Though Mff is assembled pair-wise, it has been
demonstrated by Durlofsky et al. (1987) that its inversion captures the many-body
hydrodynamic interactions.

The above framework must now be modified to incorporate the model for a
swimmer that we have developed in § 2. In principle, the propulsion of the particles
does not depend on the external force; hence, they can swim even when F = 0.
However, we have introduced the virtual propulsion force Fp in § 2 to avoid the
inclusion of moments higher than the dipole in the multipole expansion. But Fp must
be recognized is a special force, as Fα

p acting on particle α only determines its velocity,
and has no effect whatsoever on the other particles. The other particles perceive only
the stresslet acting on particle α. In addition, the propulsion stresslet Sp must be
treated separately from the induced stresslet Si – the former is an inherent property
of the swimmers, whose magnitude is constant and directions are determine by their
orientations, whereas the latter is induced by the flow of the fluid around them.
Accordingly, we distinguish the virtual propulsion force Fp from the sum of external
and inter-particle forces Fext, and the propulsion stresslet Sp from the induced stresslet
Si. The vectors Fp and Sp depend on the orientations of the particles through (2.1)
and (2.4).
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After incorporation of the above modifications, the first line of (3.2) takes the form

u − u = Mself
UF · Fp + MUF · Fext + MUS · (Sp + Si) (3.5)

where Mself
UF is the self-mobility, i.e. the mobility of each particle due to a force on

itself. For the particle pair α-β , the self mobility is

Mself,αβ
UF = Mαβ

UF δαβ, (3.6)

where δ
αβ

is the Kronecker delta. The first term on the right hand side of (3.5) provides
propulsion; only the self-mobility acts on Fp, so that the virtual propulsion force on
a particle has no effect on the other particles, as per our prescription. The second
term gives the velocity due to external and inter-particle forces, if any, and the third
term is the velocity caused by the induced and propulsion stresslets.

The modified form of the second line of (3.2) is

−e = MEF · Fext + MES · Si + Mnon-self
ES · Sp. (3.7)

The first term on the right-hand side gives the strain rate of the particles (relative to
the externally imposed strain rate) caused by the external and inter-particle forces,
and the second and third terms give the strain rate due to the induced and propulsion
stresslets, respectively; since the particles are rigid, the three terms sum to −e. The
physical interpretation of this equation is that each particle is imbedded in a flow
field generated by the forces and stresslets on all the other particles, in addition to
the macroscopic external flow, which induces a stresslet on it due to its rigidity. This
equation determines Si, which when substituted in (3.5) yields the particle velocity
vector u.

Equations (3.5) and (3.7) fully determine the collective dynamics of a system of
self-propelled particles. Once u is determined for a particular configuration of the
particles, their position and orientation are updated by time integrating

dx
dt

= u (3.8)

over a small time step �t; the process is repeated until the desired duration of the
simulation is reached. Here x is the vector of position and orientation coordinates
of all the particles. The simulation is started with an initial configuration x0; in all
the simulations, the initial position and orientation of the particles were randomly
assigned to achieve a uniform distribution.

We consider the motion of self-propelled particles in the absence of any externally
imposed flow, i.e. u = 0, e = 0. The particles are neutrally buoyant, so there is no net
gravitational force on them. An inter-particle repulsive force of very short range is
applied between particle pairs, as in previous studies using the Stokesian Dynamics
method, in order to prevent overlap during the finite-time-step integration of (3.8).
The form, strength and range of this force is the same as in Nott & Brady (1994).

It is convenient to scale all the variables in the following manner: stresslets by |S0|,
forces by |S0|/a, distances by a, velocities by u0 ≡ |S0|/(6πηa2) and time by a/u0. The
only adjustable parameter then is λ; in all our calculations, we take λ = 1.

4. Results and discussion
Simulations of self-propelled particle suspensions were performed with periodic

boundary conditions imposed in all directions to achieve an unbounded system. For
a system of N particles in three dimensions, the velocity vector u is of dimension 6N ,
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hence solution of the linear equation (3.5) requires O([6N ]3) computations at each
time step. Similarly, (3.7) requires O([5N ]3) computations for the determination of the
5N vector Si. As we require the simulations to run for a long duration to gather the
statistical data of interest (see below), the computation requirement is considerable.
To keep computation at a manageable level, we performed quasi-two-dimensional
simulations, in which the particles were restricted to move in the (x,y)-plane. For
a fixed particle concentration, this reduces the number of particles by a power of
2/3, and the sizes of u and Si to 3N . Previous studies (e.g. Nott & Brady 1994)
have shown the results of two-dimensional simulations to be similar to those of
three-dimensional simulations, if the area fraction of the former is mapped suitably
to the volume fraction of the latter. Nevertheless, it is desirable to study the motion
in three dimensions of a large number of interacting particles, and we intend to do
so in a future investigation by using the Accelerated Stokesian Dynamics scheme of
Sierou & Brady (2001).

Most of our simulations were performed with 20 particles in a square unit cell of
size L. The particle concentration, quantified by the area fraction φa ≡ Nπ/L2, was
varied by changing L. A few simulations were performed with 30 and 40 particles
(keeping φa constant) to assess the effect of system size on the results. It was found
that the effect of N on the statistical properties was quite small for φa = 0.025, and
imperceptible at higher φa. Each simulation was run for 6000 dimensionless time units,
but the data of the first 1000 time units were discarded for the statistical analysis, so
as to ensure that the results are for a statistically steady state.

Movies of simulations for φa = 0.05 and 0.1 accompany this paper as a supplement
to the online version. Several features of the dynamical behaviour can be observed
in the movies. (i) The orientation and velocity of the particles become randomized
within a short period of time, and the motion of each particle resembles Brownian
motion. (ii) Though the particles are initially distributed uniformly (randomly) in the
unit cell, in the dynamical steady state pairs, triplets and larger clusters are evident,
within which particles are in close proximity. These clusters remain intact only for
a short period of time; there is a continuous process of breaking up and formation
of clusters. At any one instant of time, there are several groups of particles, a few
stragglers, and relatively large empty spaces. (iii) There is a tendency for particles that
come in close proximity to align and move in such a way that one trails the other.
(iv) There is a substantial range in the velocity of the particles, from much lower to
much higher than the free swimming velocity of a particle.

Some of the features described above may be discerned from the snapshots shown
in figure 3. As stated earlier, the initial configuration for this simulation was that of
randomly assigned position and orientation of the particles. Each snapshot shows
several pairs or larger clusters wherein the particles are in close proximity. A striking
example of a set of particles with like orientation moving in a train is seen in the last
snapshot.

We now proceed to analyse these features in greater detail. The results presented in
for § 4.1–§ 4.3 are for the case of ‘pullers’, i.e. S0 > 0. The case of ‘pushers’, i.e. S0 < 0,
is discussed in § 4.4.

4.1. Self-diffusion

The chaotic motion of the particles seen in the movies is a result of the hydrodynamic
interactions between the particles. The interactions result in the perturbation of their
velocity from their swimming velocity; more importantly, the vorticity generated by
the motion of all the other particles causes each particle to rotate, thereby altering
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t = 1000 t = 2000

t = 4000 t = 6000

Figure 3. Snapshots of particle position and orientation at various times in a simulation with
particle concentration φa = 0.05. The arrows indicate the orientations. Some particles appear
to be in contact, but there is a thin lubricating layer of fluid between them.

its orientation and hence its swimming velocity. The chaotic motion of the particles
is apparent in figure 4, which shows the trajectories of three particles in a particular
simulation.

Chaotic particle motion leads to diffusive behaviour at long time scales. The plot
of the mean-square displacement ξ 2 ≡ 〈(x(t) − x0)

2〉 with time (figure 5), the angle
brackets indicating an average over many particles and initial conditions, shows
that the motion is ballistic at small time (slope =2), and diffusive at long time
(slope =1). The time scale for transition from ballistic to diffusive motion decreases
with increasing φa, as expected, since interactions become stronger as φa increases.
We have determined the self-diffusivity from the Einstein relation

D = lim
t→∞

ξ 2

4t
, (4.1)

and find that it is a decreasing function of the area fraction (figure 6). The inset of
the figure shows that the diffusivity appears to obey a power law, D ∼ φ−n

a . This is
in agreement with the results if Hernandez-Ortiz et al. (2005), though the physical
significance of a power lay decay is not clear to us. However, the diffusivities reported
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Figure 4. The trajectories of three representative self-propelled particles in a simulation with
particle concentration φa = 0.3.
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Figure 5. The mean-square displacement of the particles as a function of time. The dotted
lines of slope 1 and 2 at the top are given to indicate the regimes of ballistic and diffusive
motion.

by Hernandez-Ortiz et al. are much higher, except at very small φa. For instance, at
φa = 0.025 our diffusivity is just 20 % lower than that reported by Hernandez-Ortiz
et al., but at φa = 0.3 it is lower by a factor of 10. Though the difference may be
attributed partly to the fact that particle motion is restricted to two dimensions in
our simulations, the differences in the models must surely play a role: Hernandez-
Ortiz et al. (2005) imposed only the far-field point-particle interactions, whereas our
simulations have included the effect of finite particle size in the far-field interactions,
and the strong near-field interactions. The latter slow down particles that are in close
proximity (but not similarly aligned); the pair distribution in § 4.3 shows that there is
a high probability of finding a particle in close proximity with another.
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Figure 6. The self-diffusivity of the particles as a function of the area fraction.

Wu & Libchaber (2000) conducted imaging experiments of Escherichia coli
swimming in a freely suspended horizontal film, with a trace amount of passive
spheres added. As the motion of the bacteria was restricted to the plane of the film,
their experiments are similar to our simulations. However, they report the diffusivity
of the passive spheres, and not the bacteria themselves. They find the diffusivity to
be much larger than the Brownian diffusivity of the tracers, and using the Stokes–
Einstein relation, they extract an ‘effective temperature’ that is about 100 times greater
than the temperature of the film. However, the effective temperature is not a useful
quantity, as the diffusivity is only indirectly related to the temperature of the fluid.
The temperature determines the rate at which the organism provides energy for
locomotion, and the viscosity of the fluid, which together determine the swimming
speed. It is more appropriate to scale the diffusivity by u0a, as we have done here.
Scaled in this manner, the diffusivity they report for a 4.5 µm particle in a suspension
of 1.8 % by volume bacteria is ≈1.6, while we find it to be about 0.8 for the swimmers.

Self-diffusion is also observed in sheared non-Brownian suspensions of passive
spheres (Leighton & Acrivos 1987a; Morris & Brady 1996), where again velocity
fluctuations arise from hydrodynamic interactions. However, the generation of
fluctuational motion by changes in the particle orientation is not present there.

4.2. Distribution of particle velocity

To study the distribution of particle velocity, one usually examines the probability
density function f (ux, uy), which is defined so that nf (ux, uy)duxduy is the probability
of finding a particle whose x and y components of the velocity lie in the range
dux and duy (around ux and uy), respectively. Here, n is the number density of the
particles. We find it more convenient to study the velocity distribution in a particular
direction, say the x-direction, and define fx(ux) as the probability density of the x

velocity, regardless of the value of uy . The two functions are related by

fx(ux) =

∫ ∞

−∞
f (ux, uy) duy. (4.2)

Let us first consider the case of a system of particles that are so far apart that
they do not interact, i.e. φa → 0. In this situation, each particle moves with a
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constant dimensionless speed of unity in the direction of its orientation vector p.
If the orientation of the particles is randomly distributed, the velocity distribution
f NI(ux, uy) (the superscript ‘NI’ indicating that the particles are non-interacting) is
the Dirac delta function on the circle ur = 1, where ur ≡ (u2

x + u2
y)

1/2 is the speed , i.e.

f NI(ux, uy) =
1

2π
δ(ur − 1). (4.3)

The factor 1/(2π) ensures that the integral of f NI(ux, uy) over all velocities is unity.
The distribution of the x velocity then follows from (4.2),

f NI
x (ux) =

1

2π

∫ ∞

−∞
δ(ur − 1) duy =

1

π

∫ ∞

0

δ(ur − 1) duy. (4.4)

The latter equality arises from the symmetry of the integrand about uy = 0. As ux is
kept constant in the integral, duy = (ur/uy)dur , and hence

f NI
x (ux) =

1

π

∫ ∞

|ux |

δ(ur − 1) ur(
u2

r − u2
x

)1/2
dur. (4.5)

From the sifting property of the delta function, we therefore have

f NI
x (ux) =

1

π

1(
1 − u2

x

)1/2
. (4.6)

Note that f NI
x diverges as ux → ±1. As the orientations are uniformly distributed, and

there is no external force favouring motion in a particular direction, this distribution
holds for all directions in the plane of motion. The distribution given by (4.6) is
shown by the dotted line in figure 7.

The distribution will, of course, be altered when the particles interact. We have
analysed the results of our simulations to determine the velocity distribution. The
particle velocities were collected at dimensionless time intervals of unity, during which
time a freely swimming particle moves a distance of its radius. The distribution
function fx(ux) was determined by constructing a histogram of the number
distribution in equally sized intervals of ux , and normalizing it so that

∫
fx dux = 1.

The same was repeated for the y-direction. Due to the absence of directionality in
the problem, the distribution function should be the same for all directions, which
is indeed what we observe in figure 7 (compare the lines and symbols). Given the
isotropy of the velocity distribution, we henceforth denote by f (u) the distribution in
any direction. It is evident from figure 7 that the velocity distribution deviates from
that of non-interacting swimmers (dotted line) even at small φa.

For φa = 0.025, the velocity distribution is close to f NI for small |u|, but departs
from it when |u| is greater than a value slightly less than unity – it has maxima at
u ≈ ±1, and decays rapidly for |u| > 1. Thus, there is a finite probability of finding
a particle with a velocity significantly higher than that of an isolated swimmer. For
large φa, the velocity distribution is very different from f NI; it appears to resemble
the normal distribution (figure 8),

f (u) =
1√

2πσ 2
exp

[
− (u − u)2

2σ 2

]
, (4.7)

where u is the mean velocity and σ 2 the variance. Small deviations from the normal
distribution are apparent, such as a slight deficit of the probability at small |u|, and a
faster decay at large |u| (see inset of figure 8). In the study of Wu & Libchaber (2000),
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Figure 7. The probability distribution function of particle velocity in a suspension of
self-propelled particles at concentrations φa = 0.025 and 0.194. The lines and symbols are
the distributions of ux and uy , respectively, where x and y are the coordinates of the (fixed)
laboratory reference frame. The equality of fx and fy shows the absence of directionality in
the problem. The dotted line is the velocity distribution for a collection of non-interacting,
randomly oriented self-propelled particles, given by (4.6).
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Figure 8. The velocity distribution for a suspension with φa = 0.3 compared with the normal
distribution having the same mean and variance. The inset shows the same plot in semi-log
coordinates.

referred to earlier, it is reported that the speed ur of Escherichia coli follows the
Maxwell distribution f (ur ) = (ur/σ

2) exp[−u2
r /(2σ 2)] at large particle concentrations,

which is in accord with the normal distribution of the velocity in any direction. Since
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Figure 9. Comparison of the velocity distribution for a dilute (φa = 0.025) and concentrated
(φa = 0.3) suspension of swimmers with and without the inclusion of near-field hydrodynamic
interactions (NF).

the largest concentration they studied is a volume fraction of φ = 0.1, it appears that
they found a normal distribution at lower concentrations than we do. Whether the
difference may be ascribed to the differences in the conditions of the experiments and
the simulations, or the simplicity of our model is difficult to say. Our results indicate
that careful measurements of the velocity distribution for a range of concentration is
necessary. Conducting simulations and experiments in which particles are free to move
in all three spatial dimensions would also be a worthwhile pursuit. Nevertheless, the
qualitative agreement is perhaps an indication that our description is fundamentally
sound, and it captures some of the important features of collective motion.

Figure 9 compares the results obtained with and without the inclusion of the near-
field hydrodynamic interactions, represented by the term Rnf − R∞

nf in (3.4). We note
that the velocity distribution is unchanged by the inclusion of near-field interactions
for a dilute suspension of swimmers, but it is significantly altered for a relatively
concentrated suspension. This is not an unexpected result, as the frequency with
which a typical particle comes into close proximity with others is relatively low at
small φa, but it increases with φa. It is pertinent to note that our simulations without
the near-field interactions do not reduce to point-particle simulations, of the kind
performed by Hernandez-Ortiz et al. (2005). In Stokesian Dynamics simulations, the
finite size of a particles is accounted for by retaining the induced dipole moments,
and parts of the quadrupole and octupole moments (called the irreducible moments),
in the multipole expansion of the force density distribution on the particle surface,
and also the corresponding finite-size terms in the Faxèn relations (Brady & Bossis
1988; Brady et al. 1988; Durlofsky et al. 1987).

Reverting to our simulations with the full hydrodynamic interactions, the velocity
distributions for all the particle concentrations that we have studied are shown in
figure 10. As φa increases, the depth of the well between the two maxima decreases,
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Figure 10. The velocity distribution for a range of the particle concentration.

vanishes completely at φa slightly over 0.1, and the distribution resembles a normal dis-
tribution at high φa. The variance σ 2 of the distribution decreases with increasing φa.

4.3. Correlations

As discussed earlier, the movies (see the online supplement) and the snapshots in
figure 3 show significant correlation in the position and orientation of the particles.
We first analyse the correlation in particle position in terms of the pair correlation
function g(r1, r2), which is defined so that ng(r1, r2) dr2 is the probability of finding
particle 2 within the volume dr2 if particle 1 is situated at r1. As the system is
spatially homogeneous, g is a function only of the separation r ≡ r2 − r1. As a result,
in two dimensions we may express it as g(r, θ), where r is the scalar separation,
and θ an angle. It is not useful to measure θ from a fixed laboratory axis, as the
absence of directionality implies that g is isotropic. However, there is no isotropy
if θ is measured from the orientation vector of particle 1. This definition of θ is
also useful, as it tells us at what angle with respect to the orientation vector of a
particle is there a greater likelihood of finding another. We therefore define θ as the
angle measured anticlockwise from p1 to r , as shown in figure 11. Symmetry of the
particle shape about its orientation axis results in the same symmetry for g, and hence
g(r, θ) = g(r, 2π − θ). We therefore consider the variation of g only for the first two
quadrants, 0 < θ < π.

Figure 12 shows a greyscale plot of g(r, θ). The strong anisotropic accumulation
of particles near contact is apparent. There is a higher probability of finding another
particle near its front (0 < θ < π/2) than near its rear (π/2 < θ < π). The sharp
decay of the pair correlation with separation distance is also apparent in the figure.
This becomes clearer if we consider its angle-averaged value g̃(r) ≡ (1/π)

∫
g(r, θ) dθ ,

shown in figure 13. Note that the pair probability near contact is far higher than
that of a hard-sphere fluid at thermodynamic equilibrium. (While contact of smooth
spheres is forbidden in Stokes flow, particles do come quite close to each other.
For the purpose of this discussion, we do not distinguish between contact (r = 2)
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p1

p2

r

θ

Figure 11. A pair of neighbouring self-propelled particles. The position and orientation
correlation functions are determined in a reference frame whose origin is coincident with the
centre of particle 1, and whose x-axis is in the direction of p1.
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Figure 12. Greyscale plot of g(r, θ ) for φa = 0.05. The solid circle represents the surface of
particle 1, r = 1, and the dashed circle the locus of centres of particle 2 if it were in contact
with particle 1, r = 2. The radial distance beyond r = 2 has been stretched by a factor of
10, in order to discern the variation near contact. The arrow indicates the direction of the
orientation vector p1. The bar below the plot gives the relation between the grey level and g.

and near contact (2 < r � 2.025).) For φa = 0.025, for example, g̃(2) is just a little
over unity for a hard-sphere fluid (Carnahan & Starling 1969), but here it is about
30 times larger. There is a similar difference in the build-up near contact for all
particle concentrations. Secondly, g̃(r) decays much more rapidly with r than for a
hard-sphere fluid, or a sheared suspension of passive particles (Sierou & Brady 2002).
Thus, the probability of finding a neighbour in close proximity is high, but it decays
to the bulk probability within a short separation.

It is pertinent to note that a very large build-up of particles near contact is seen in
sheared suspensions of passive particles in the compressional quadrant, and the actual
value is found to be sensitive to the strength and range of the inter-particle repulsive
force (Sierou & Brady 2002; Singh & Nott 2000), or the ‘thermodynamic’ force
(Morris & Katyal 2002; Phung, Brady & Bossis 1996) that arises from Brownian
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Figure 13. The angle-averaged pair correlation function as a function of the scalar
separation, for three values of φa. The inset shows the variation at small r .

motion. We have not varied the form of the repulsive force in this study, but
believe that the results are relatively insensitive to it. The reason is that the balance
between the hydrodynamic and repulsive (or thermodynamic) forces that exists in
the compressional quadrant in sheared suspensions (Brady & Morris 1997) is absent
here; as two self-propelled particles approach each other, they continue to rotate, and
the difference in their orientation causes them to move apart. This process is clearly
observable in the movies. As a result, we do not observe the long-lasting doublets
and triplets that are seen in sheared suspensions.

The angular variation of the pair correlation is determined by averaging over
annular shells of width �r = 0.025. The angular variation in the first and second
shells is shown in figure 14. The plots for all the concentrations are qualitatively
similar; they show a higher probability of finding a neighbour towards the front of
each particle than at its rear, but only in the first shell. In the second shell, there is
a smaller peak near θ = 3π/4 in all the cases, which reflects the ‘peeling off’ of the
accumulation from near contact, as seen in figure 12; apart from this peak, the pair
correlation at all angles is roughly uniform. In the third and higher shells, the pair
correlation at all angles is roughly uniform, and close to the bulk value of unity (not
shown). Thus, there is anisotropy in the distribution of the neighbours, but only at
short separations.

Finally, we consider the correlation in the orientation of particle pairs. For particles
1 and 2 located at r1 and r2, respectively, the orientation correlation function is
〈 p1· p2〉, the angle brackets indicating an average over many particles and over time.
It too is a function of r and θ , as defined in figure 11. A greyscale plot of 〈 p1· p2〉 is
shown in figure 15; note that, unlike in figure 12, the radial distance is not stretched
here. The positive correlation of the orientations at the rear of the particle, around
θ = π, and negative correlation around θ = 3π/4 are evident. There appears to be no
correlation at the front of the particle.
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Figure 14. Angular variation of the pair correlation function, averaged over annular shells of
width �r = 0.025. The upper cluster of lines is for the first shell 2 < r � 2.025, and the lower
cluster of lines for the second shell 2.025 < r � 2.05.
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Figure 15. Greyscale plot of the orientation correlation 〈 p1· p2〉. The solid circle represents
the surface of particle 1, r = 1, and the dashed circle the locus of centres of particle 2 if it
were in contact with particle 1, r = 2. The arrow indicates the direction of the orientation
vector p1. The bar below the plot gives the relation between the grey level and 〈 p1· p2〉.

To consider the variation of 〈 p1· p2〉 with r , we show its value as a function of r

for θ = π and 3π/4 in figure 16. The positive correlation for the former and negative
correlation for the latter near contact is evident. The correlation vanishes at large r ,
as expected, but its decay with r is much slower compared to that of g̃(r) (compare
figure 13), meaning that particle orientations remain correlated over longer distances.
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Figure 16. The two-particle orientation correlation function 〈 p1· p2〉 as a function of the
scalar separation for two values of θ . The upper cluster of lines, showing positive correlation,
is for θ = π, and the lower cluster of lines, showing positive correlation, is for θ = 3π/4.
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Figure 17. Angular variation of the two-particle orientation correlation function, averaged
over the annular shell 2 < r < 2.025.

The angular variation of 〈 p1· p2〉 (figure 17), averaged in an annular shell of width
�r = 0.1, shows a monotonic rise with θ , with maximum correlation near θ = π.

Considering figures 14 and 17, we see that while the probability of finding a
neighbour is highest near the front of a particle, the probability of the neighbour
being of like alignment is highest at the rear.
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Figure 18. Greyscale plot of g(r, θ ) for swimmers that ‘push’ from the rear, i.e. S0 < 0 (see
(2.1)). This figure should be compared with figure 12 for particles that pull from the front.

4.4. Statistical features of a suspension of pushers (S0 < 0)

As stated earlier, the results presented in § 4.1–§ 4.3 are for S0 > 0, corresponding to
the case of the propelling arms of the swimmer pulling it from the front (see figure 1).
As mentioned in § 2, the opposite case of the propelling arms pushing from the rear,
which in our model is achieved by setting S0 < 0, is also observed in nature. The
collective dynamics of a suspension of such particles is therefore also of interest.

We have performed simulations for this case at a particle concentration of φa =
0.05. The mean-square displacement, diffusivity, velocity distribution, and the radial
variation the pair correlation g̃(r) are found to be virtually identical to that of pullers
(shown in figures 5, 6, 10 and 13, respectively), and are therefore not presented. The
angular variation of the pair correlation and the orientation correlation are, however,
different. A greyscale plot of the pair correlation is shown in figure 18; the differences
with figure 12 are apparent. Here, there is a strong accumulation of neighbours closer
to the front (0 < θ < π/4), spread over a slightly longer radial distance, and a weaker
accumulation that is roughly uniform over other angles. As in figure 12, the peeling
off of the accumulation from near contact at the rear is evident.

The greyscale plot of the orientation correlation 〈 p1· p2〉 (figure 19) is also
significantly different from the corresponding plot for pullers (figure 15). Here, the
region of positive correlation is spread over a larger range of θ at the rear of
the particle, and the region of negative correlation is pushed towards the equator
(θ = π/2). There is a second region of positive correlation just in front of the equator,
which was weaker and spread around θ = 0 in figure 15.

This brings us to the question of whether the observed correlations, and the
differences between the two cases, can be explained by simple mechanistic arguments,
such as in a suspension of passive particles (Batchelor & Green 1972; Brady &
Morris 1997). We are unable to provide a simple explanation, for the reason that as
a swimmer approaches another, it is rotated by the fluid vorticity generated by the
others, which changes its swimming velocity. Even in a dilute suspension of swimmers,
where one may assume interactions to be pair-wise, the problem of determining the
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Figure 19. Greyscale plot of 〈 p1· p2〉 for swimmers that ‘push’ from the rear, i.e. S0 < 0 (see
(2.1)). This figure should be compared with figure 15 for particles that pull from the front.

microstructure is significantly more complicated than in a suspension of passive
particles: the trajectories of two particles, initially far apart, depend on their initial
orientations. For determining the statistical properties of interest, their trajectories
must be determined for all initial orientations, and the appropriate quantities averaged.

5. Summary and conclusion
We have studied the collective dynamics of self-propelled particles in a Newtonian

fluid by conducting Stokesian Dynamics simulations. We have modelled each swimmer
as a sphere whose propulsion arises by the action of a stresslet Sp at a point slightly
displaced from its centre. The strength S0 of the stresslet is assumed to be constant,
and the principal directions of Sp, and therefore the direction of propulsion, are
determined by the orientation vector p of the particle. Rather than calculate the
mobility due to an off-centre stresslet, we have determined the propulsion velocity of
each particle by employing the ansatz of a virtual propulsion force Fp acting in the
direction of p. However, the force on a given particle only determines its propulsion
velocity, and all other particles only perceive the stesslet acting on it.

The chaotic motion of the interacting particles yields diffusive motion at long times,
and the self-diffusivity decreases as the particle concentration φa increases. This trend
is in agreement with the results of Hernandez-Ortiz et al. (2005), but their diffusivities
are up to an order of magnitude higher, as they ignored the near-field hydrodynamic
interactions. From the results of our simulations, we have extracted some important
statistical indicators of the dynamics and microstructure. At high φa, we find that
the distribution of particle velocity u in any given direction is close to the normal
distribution, which is in accord with the experimental observation of Wu & Libchaber
(2000). At low φa, however, the velocity distribution is qualitatively different: it has a
local minimum at u = 0, peaks near ±u0, where u0 is the speed of a solitary swimmer,
and decays rapidly for larger velocities.

Our analysis of the correlation of positions and orientations of particle pairs
shows strong correlation near contact. The pair correlation function shows a large
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build-up of particles near contact even at low φa, suggesting that even at low particle
concentration, the effects of finite particle size and the strong lubrication interactions
are important in determining the collective dynamics. However, the pair correlation
function decays much more rapidly with separation that for a hard-sphere fluid or a
sheared suspension of passive (non-swimming) particles. Its angular variation shows
anisotropy in the distribution of neighbours near contact, with a greater probability
near the front of the test particle than at the rear. This anisotropy too vanishes quite
rapidly with separation. The orientation correlation function decays relatively slowly
with separation, and its angular variation shows greater correlation at the rear of the
test particle than in the front. Thus, while there is a greater probability of finding a
close neighbour at the front, the probability that the neighbour has like orientation is
highest at the rear. This result tallies with our observation in the movies that particles
that come in close proximity often leave with like alignment, one trailing the other.

A comparison of the statistical properties of suspensions of ‘pullers’ and ‘pushers’
reveals interesting similarities and some differences. The mean-square displacement,
diffusivity, velocity distribution, and the radial variation of the correlations are
virtually identical in the two cases, but there are differences in the angular variation
of the correlations. A mechanistic explanation for the nature of the correlations eludes
us, as the rotation of particles as they approach each other makes their dynamics
unamenable to simple analysis.

A few words on how our model may be improved are in order. As remarked earlier,
we consider this to be a simple ‘first cut’ model, which captures the most important
features of interacting self-propelled particles. One important improvement would
be to compute the correct mobility for an off-centre stresslet on a sphere, which
necessitates the inclusion of higher moments of the force distribution. As a starting
point, it appears useful to include a quadrupole at the particle centre; while a dipole
at the centre of a sphere does not result in propulsion, due to symmetry, a quadrupole
does. Another useful extension would be to consider non-spherical swimmers, in
order to simulate the motion of organisms such as E. coli, which are rod-like. A
simple way of extending the current framework to study rod-like swimmers is by
‘sticking’ two or more spheres together to form a linear extended object, and using
constrained dynamics to ensure that they move as a solid body. Lastly, we note that
while no external or propulsive torque was imposed on the particles in this study, it is
straightforward to impose both. An external torque arises, for example in gravitaxis
when mass is asymmetrically distributed about the centre of the particle, and its
alignment differs from the vertical (Kessler 1986); an internal or propulsive torque
causes the ‘tumbling’, or sudden change in orientation, of bacteria like E. coli.

We have benefited from discussions with Sriram Ramaswamy and Ganesh
Subramanian during the course of this work.
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